1. Year Groups

Years 5/6

2. Aspect of D&T

Electrical systems

Focus

More complex switches and circuits

4. What could children design, make and evaluate?

vehicle alarm security lighting system alarm for valuable artefact automatic nightlight electrical board game alarm for school shed other - specify

7. Links to topics/themes

Our School Toys and Games Keep Safe Ourselves Culture and Leisure Travel Homes Buildings other - specify

5. Intended users

vehicle owner themselves school community school administrator younger children siblings parents museum curator other - specify

8. Possible contexts

school community culture leisure enterprise business other - specify

6. Purpose of products

protection detection safety security warning comfort illumination entertainment other - specify

9. Project title

(product) Design, make and evaluate a (user) for (purpose). To be completed by the teacher. Use the project title to set the scene for children's learning prior

to activities in 10, 12 and 14.

11. Related learning in other subjects

- **Spoken Language** ask relevant questions, give well-structured descriptions and explanations. Build technical vocabulary.
- **Computing** use technologies for research purposes and be discerning when evaluating digital content.
- Science apply knowledge and understanding of circuits, switches, conductors and insulators.

16. Possible resources

zinc carbon or zinc chloride batteries. crocodile leads, bulbs, bulb holders, buzzers, light emitting diodes (LEDs), micro switches, reed switches and magnets, light dependent resistors (LDRs), wire, automatic wire strippers, masking tape, construction materials and tools as required

computer control software and interface boxes or

17. Key vocabulary

series circuit, parallel circuit, names of switches and components, input device, output device, system, monitor, control, program, flowchart

function, innovative, design specification, design brief, user, purpose

3. Key learning in design and technology

Prior learning

- · Understanding of the essential characteristics of a series circuit and experience of creating a batterypowered, functional, electrical product.
- Initial experience of using computer control software and an interface box or a standalone box, e.g. writing and modifying a program to make a light flash on and off.

Designing

- Use research to develop a design specification for a functional product that responds automatically to changes in the environment. Take account of constraints including time, resources and cost.
- Generate and develop innovative ideas and share and clarify these through discussion.
- Communicate ideas through annotated sketches, pictorial representations of electrical circuits or circuit diagrams.

Making

- · Formulate a step-by-step plan to guide making, listing tools, equipment, materials and components.
- Competently select and accurately assemble materials, and securely connect electrical components to produce a reliable, functional product.
- Create and modify a computer control program to enable an electrical product to work automatically in response to changes in the environment.

Evaluating

- Continually evaluate and modify the working features of the product to match the initial design specification.
- Test the system to demonstrate its effectiveness for the intended user and purpose.
- Investigate famous inventors who developed ground-breaking electrical systems and components.

Technical knowledge and understanding

- Understand and use electrical systems in their
- Apply their understanding of computing to program, monitor and control their products.
- Know and use technical vocabulary relevant to the project.

10. Investigative and Evaluative Activities (IEAs)

- Using research, discuss a range of relevant products that respond to changes in the environment using a computer control program such as automatic nightlights, alarm systems, security lighting e.g. Who have the products been designed for and for what purpose? How and why is a computer control program used to operate the products? What input devices, e.g. switches, and output devices, e.g. bulbs, have been used?
- Investigate electrical sensors such as light dependent resistors (LDRs) and a range of switches such as push-to-make switches, push-to-break switches, toggle switches, micro switches and reed switches. To gain an understanding of how they are operated by the user and how they work, ask the children to use each component to control a bulb in a simple circuit. Remind children about the dangers of mains
- Children could research famous inventors related to the project e.g. Thomas Edison light bulb.

12. Focused Tasks (FTs)

- Through teacher demonstration and explanation, recap measuring, marking out, cutting and joining skills with construction materials that children will need to create their electrical products.
- Demonstrate and enable children to practise methods for making secure electrical connections e.g. using automatic wire strippers, twist and tape electrical connections, screw connections and connecting blocks
- Drawing on science understanding, ask the children to explore a range of electrical systems that could be used to control their products, including a simple series circuit where a single output device is controlled, a series circuit where two output devices are controlled by one switch and, where appropriate, parallel circuits where two output devices are controlled independently by two separate switches.
- Drawing on related computing activities, ensure that children can write computer control programs that include inputs, outputs and decision making. Test out the programs using electrical components connected to interface boxes or standalone boxes.
- Teach children how to avoid making short circuits.

13. Related learning in other subjects

- **Mathematics** apply understanding and skill to carry out accurate measuring using standard units i.e. cm/mm.
- Science apply knowledge and understanding of circuits, switches, conductors and insulators.
- Computing design, write and debug programs that accomplish specific goals, including controlling physical systems. Use sequence, selection, and repetition in programs. Work with variables and various forms of input and output.

18. Key competencies

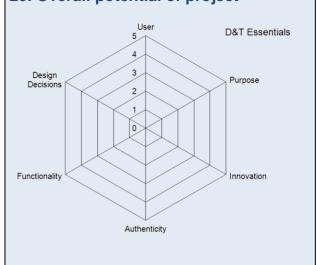
standalone boxes

connecting leads

problem-solving teamwork negotiation consumer awareness organisation motivation persuasion leadership perseverance other - specify

19. Health and safety

Pupils should be taught to work safely, using tools, equipment, materials, components and techniques appropriate to the task. Risk assessments should be carried out prior to undertaking this project.

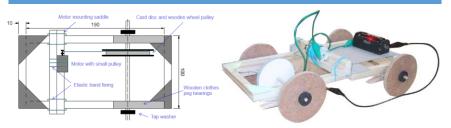

14. Design, Make and Evaluate Assignment (DMEA)

- Develop an authentic and meaningful design brief with the children.
- Ask the children generate innovative ideas by drawing on research and develop a design specification for their product, carefully considering the purpose and needs of the intended user.
- Communicate ideas through annotated sketches, pictorial representations of electrical circuits or circuit diagrams. Drawings should indicate the design decisions made, including the location of the electrical components and how they work as a system with an input, process and output.
- Produce detailed step-by-step plans and lists of tools, equipment and materials needed. If appropriate, allocate tasks within a team.
- Make high quality products, applying knowledge, understanding and skills from IEAs and FTs. Create and modify a computer control program to enable the product to work automatically in response to changes in the environment.
- Critically evaluate throughout and the final product, comparing it to the original design specification. Test the system to demonstrate its effectiveness for the intended user and purpose.

15. Related learning in other subjects

- Mathematics apply understanding and skill to carry out accurate measuring using standard units i.e. cm/mm.
- Science apply knowledge and understanding of circuits, switches, conductors and insulators.
- **Computing** design, write and debug programs that accomplish specific goals, including controlling physical systems. Use sequence, selection, and repetition in programs. Work with variables and various forms of input and output.

20. Overall potential of project



Years 5/6

Electrical Systems

More complex switches and circuits

Instant CPD

Tips for teachers

- ✓ To ensure progression from Y3/4, children need to develop an understanding of 'monitoring' as well as control and the idea of 'input' as well as 'output'.
- ✓ This project should be undertaken soon after electricity is covered in science and programming, monitoring and control are undertaken in computing.
- Create a selection of images of existing products e.g. burglar alarm and outdoor security lighting, that use monitoring and control.
- ✓ Discuss the difference between products that rely upon timed events, such as traffic lights, and those that depend upon monitoring to make something happen such as a security alarm.
- ✓ Some children will be ready to use parallel circuits in their electrical systems and this enables two or more sensors or switches to be incorporated in their products.
- ✓ Have a 'working' circuit set up so that children can test suspect components.
- ✓ Some components e.g. buzzers and light emitting diodes (LEDs) need to be connected the right way round in a circuit, ensuring positive and negative match the poles of the battery.
- ✓ Make sure electrical components and batteries match e.g.
 1.5v bulb with a 1.5v battery.
- ✓ Do not use rechargeable batteries.
- ✓ CLEAPS recommend zinc carbon and zinc chloride batteries for Primary schools, not rechargeable, lithium of alkaline as these can overheat if short circuited. Button batteries are not recommended for younger children.
- ✓ Use non-mercury tilt switches.

Useful resources at www.data.org.uk

- Torches, Lamps and Lanterns
- Alarming Vehicles
- Designing and making alarm circuits using inputs with computer control

Switches and sensors

Push-to-make switch

When you push, the electricity

flows through the circuit, but

when you release it the circuit is

broken and the switch is off.

Push-to-break switch

The switch is off while the button

is pushed, but returns to its 'on'

position when button is released.

Reed switch

Activated by a magnet which

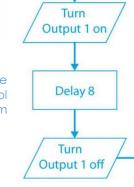
closes the contacts.

Tilt switch

When tilted a ball bearing

bridges the contacts inside,

completing the circuit.



Light-dependent resistor (LDR)

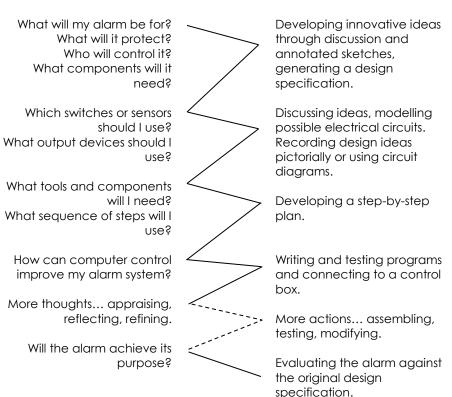
- Micro-switch a switch that can operate as push-to-break switch or a push-to-make switch.
- Push-to-break switch a switch turned off by pressing it.
- Push-to-make switch a switch turned on by pressing it.
- Reed switch a switch operated by a magnet.
- Tilt switch a switch that works when tilted at an angle.
- Toggle switch a switch operated when a lever is pressed.
- Light dependent resistor (LDR) a sensor that operates when light is shined on it.

Start

Is Input 1 on

Yes

No


- Children need to learn how to write a sequence of instructions where a decision is made e.g. when a switch is pressed a buzzer is activated.
- They use a 'control language' or create a flowchart to produce a series of instructions.
- Children's computing knowledge and skills need to focus on using input and output devices connected to a standalone box or interface box.
- They use their learning in computing to control and monitor products they have designed and made e.g. alarm system.

Designing, making and evaluating an alarm to protect a valuable artefact

An iterative process is the relationship between a pupil's ideas and how they are communicated and clarified through activity. This is an example of how the iterative design and make process *might* be experienced by an individual pupil during this project:

ACTION

THOUGHT

Glossary

- Modelling to realise and manipulate ideas in a tangible form.
- **Open switch** when a switch is positioned such that electricity cannot flow through it.
- Closed switch when a switch is positioned such that electricity can flow through it.
- Normally open the term used to describe when a switch is in the
 off position, i.e. the switch is open and no electricity can flow when
 the button on not pressed.
- Normally closed the term used to describe when a switch is in the on position i.e. the switch is closed and electricity can flow when the button is not pressed
- Computer control input when a switch, such as a micro switch, sends a signal to a computer control box to activate a sequence of events such as a buzzer or light being used to attract attention or alert people.
- Output devices components that produce an outcome e.g. bulbs and buzzers.
- **Input devices** components that are used to control an electrical circuit e.g. switches or sensors.

